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Space-time supersymmetry of the compactified Es @ Ek heterotic superstring 

[l] provides a potential solution to the naturalness problem in elementary particle 

physics. On the other hand, nature is not supersymmetric, at least at the ener- 

gies accessible to the existing accelerators. A satisfactory mechanism for thii low- 

energy supersymmetry breaking is still missing. Recently a new, ten-dimensional 

0(16) 8 0(16)’ string theory without space-time supersymmetry has been con- 

structed [2,3], by “twisting” the heterotic superstring, that is, by modifying its 

boundary conditions in a way consistent with the requirement of modular invari- 

ance (2-61. The 0(16) @ O(l6)’ model is modular invariant, tachyon-free and has 

a positive one-loop cosmological constant. It is an interesting question to see how 
I ! 

compactification to dimensions less than ten affects the spectrum and the cosmo- 

logical constant. In this article, we study in detail a simple example of a non-trivial 

compactification of the 0(16) @ O(l6)’ heterotic string, from ten to nine dimensions. 

We consider compactification on a twisted torus and find a case where supersym- 

metry is asymptotically restored ss the radius of the compact dimension becomes 

small, in units of m, the square root of the inverse string tension. Further com- 

pactification to five dimensions leads to a model with an exponentially suppressed 

one-loop cosmological constant at small radii. 

The 0(16) 8 O(16)’ model is most easily constructed [2] by using the fermionic 

formulation of the heterotic superstring, with the right-moving Green-Schwarz fer- 

mions S”, and the left-moving Ramond-Neveu-Schwsrz fermions xr and 2’ trans- 

forming as (10,l’) @ (1,16’) under 0(16) @O(lS)‘. The left-moving fermions belong 

to four sectors: (NS,NS), (NS,R), (R,NS) and (R,R), corresponding to different o 

boundary conditions for x’ and x” on the two-dimensional world-sheet (u, t). In 

order to obtain the 0(16) @ O(l6)’ model, one projects onto the eigenvalue R = 1 
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eigenstates of the Zr twist operator 

R = (-1) Pselrihe~4, 7 (1) 

where Fs is the space-time fermion number and j,r and J:~ are generators of rota- 

tions in 0(16) and O(lS)‘, respectively. The massless spectrum of this model con- 

tains the following particles. In the untwisted sector, with the periodic right-moving 

fermions, the projection onto R = 1 gives 6v gauge bosons (120,l’) @ (l,lZO’), 6. 

fermions (128,l’) @ (1,128’), and the bosonic part of the supergravity multiple& 

(g,,“, B,,, 4). From the twisted sector, with the antiperiodic right-moving fermions, 

one obtains 8.1 fermions in the representation (16,lS’). 
/ 

We are interested in constructing a ninedimensional string theory which, in the 

limit of an infinite radius of the compact dimension, reproduces the ten-dimensional 

0(16) @ O(16)’ model. Compactification on a torus [7] of radius r results in a 

model with the spectrum consisting of Kaluza-Klein and topological excitations of 

dimensionally reduced ten-dimensional states. The U(1) isometry group of the torus 

gets enlarged to SU(2) at r = fi thii srxcalled Frenkel-Kd point corresponds 

to a minimal value [of order (27rc~‘)-~/~] of the one-loop cosmological constant. A 

way to construct some other models is to introduce an extra twist in the compact 

dimension [S]. 

The requirement of modular invariance of the compactified string forces the 

left-moving and the right-moving compact momenta p’ = (pr,,p~~) to lie on an even, 

self-dual Lorentzian lattice with the signature (+, -) [a]; the total string momentum 

coming from the compact dimension corresponds to the sum pi + pi, whereas the 

winding number to the difference pi - pi. Any twcdiiensional lattice with such 

a property can be obtained by an SO(1,l) b oost of or, a Lorentzian lattice in R1*l, 
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generated by the light-like vectors -&((if c) [Q]. We begin our construction at the 

radius r = a, and, for the moment, set a’ = i; we will restore diiensionfull con- 

stants when considering compactification at an arbitrary radius r. We parametrize 

momenta on the lattice 01 as 

~=mji(Z+Z)+n+( Z-Z) = ~(m+n,m-n), (2) 

where m and n are integers corresponding to the string momenta and the winding 

numbers, respectively. We introduce an extra twist [E] by modifying the operator 

R of es.(l) to 

R' = ,2&R 
, (3) 

I ! 

where a is constrained to be half of a lattice vector, in order to insure Rn = 1. 

In the untwisted sector, the right and left moving mass operators are respectively 

given by 

;M; = NR+ fpi 

$jrf; = NL+c++P;, 

(4) 

(51 

where NR (NL) are normal-ordered number operators for right (left) movers and c 

is the normal ordering constant for the left movers; c = -1 for (NS,NS), c = 0 for 

(N&R) and (R,NS), and c = 1 for (R,R). In the twisted sector 

$'J; = NR - 4 + f(pR + ~5~)' 

;M; = NL +c+ #(pL +aL)' . 

(6) 

(7) 

The square of the vector a’ is constrained to be an integer, in order to have matched 

right and left mass levels in the twisted sector, eqs.(Q-7). It is easy to show that 



4- FERMILAB-P&-86/142-T 

any vector 8 with 6 integer, equal to half of a lattice vector on or, can be obtained 

from one of the light-like vectors, $1 or ;,I, 

6; = &(3+?) =$ ps;9= (-I)“, (81 

$1 = &(Z- Z) * paa = (-I)“, (9) 

by shifting with some lattice vectors. These twovectors define twoseparate theories, 

which we call Twist I and Twist II, respectively. 

Repeating the arguments along the limes of [2] leads to the conclusion that the 

only effect of modifying the twist operator from R to R' is to project onto the 

states with the opposite sign of (-l)‘~, for odd winding numbers n (Twist I) or 

odd momentum numbers m (Twist II). This procedure is reminiscent of the type 

of compactification considered previously in [lo] for superstrings. For the special 

value of the radius r = fi considered so far, Twist I and Twiit II theories are 

identical, due to complete symmetry between momenta and winding numbers. The 

massless spectrum come.9 entirely from the untwisted sector; besides the usual 8,. 

gauge bosons (120,l’) @ (1,120’), 8. fermions (128,l’) $ (1,128’), and the bosonic 

part of the supergravity multiplet, it contains two 8. gauge-singlet fermions with 

m=n=Ztl. 

In order to construct Twist I and Twist II theories for an arbitrary value of the 

radius r of the torus, let us boost the lattice (I~ with a rapidity y = loge. Under 

this transformation 

p” -&m+n,m-n) 4 5” = -&m+pm- a,, (10) 

which leads to the identification o = e/r. This Lorentz transformation also acts 
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on the twist vectors & and &r, resealing them by the factors a and a-l, respectively; 

twist operators remain unchanged. 

Let us first discuss the light particle spectrum in the limit of an infinite radius, 

that is, a -+ 0. Twist I and Twist II theories behave differently in this limit. 

The untwisted sector of the Twist I model contains massless particles identical 

to the dimensionally reduced 0(16) 81 O(l6)’ untwisted string excitations, and a 

tower of their doubly-degenerate Kaluza-Klein excitations with the same quantum 

numbers, starting at the mass level w = u~/Q’. The spectrum of the twisted sector 

begins at the mass level Mr = a2/4d with two 8.t fermions in the representation 

(16,16'). The doubling of the massive spectrumIis due to the discrete symmetry 

that reverses the sign of the momentum number m. The reason why Twist I model 

behaves at large radius like the dimensionally reduced 0(16) ~3 O(l6)’ string theory 

is that in this limit all light states have zero winding number n, therefore the twist 

operator acts in the same way as the original operator R of es.(l). Twist II model 

behaves in a different way, since the corresponding twist operator gets modified 

for odd momentum numbers m. As a result of this modification, all light particles 

are removed from the twisted sector, and the space-time quantum numbers of the 

Kaluza-Klein excitations are changed in the untwisted sector. The 6rst massive 

level I@ = or/d in the latter sector contains two 8, fermions (120,l’) CD (1,120’), 

two 8,. vector bosons (128,l') @ (1,128'), and also, doubled fermionic part of 

the supergravity multiplet. The next level contains supersymmetric partners of 

these particles, and so on. Such a model corresponds to the dimensionally reduced 

Es @ EL heterotic superstring, with supersymmetry broken spontaneously and the 

gauge group broken to 0(16) @ O(l6)‘. 
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In the limit of a small radius of the compact dimension, Twist I (Twist II) model 

behaves exactly like Twist II (Twist I) model at large radius, with the parameter 

a replaced by a-‘. For small radii, topological excitations with non-zero winding 

number n and zero momentum m become light, playing exactly the same r6le as 

Kaluza-Klein excitations at huge radii. This duality between Kaluza-Klein and 

topological excitations has been observed before [7,8], but in the case of twisted 

strings considered here its consequences are different than ln the case of untwisted 

strings. It is clear from our analysis, that neither Twist I nor Twist II models are 

self-dual. Under the duality transformation, a * a -*, Twist I and Twist II models 

are interchanged. Therefore, for example, there is no reason to expect that the 
I ! 

Frenkel-Ka! point a = 1 extremises the cosmological constant. 

Let us now summarize the asymptotic behaviour of the nine-dimensional twisted 

string models constructed here. Twist I interpolates between the 0(16) @ 0(16)’ 

heterotic string at large radii and the spontaneously broken Es @ EA heterotic su- 

perstrlng at small radii. Twist II interpolates between the same, however in the 

opposite limits of the radii. We conclude that only the Twist I model can be re- 

garded as a compactification of the ten-dimensional O(16) @O(lS)’ heterotic string. 

In this model, supersymmetry ls asymptotically restored at small radii of the com- 

pact dimension. 

It is worth mentioning that besides the Frenkel-Kti point, a = 1, considered 

earlier, there exists another point, o = fi (a = -&) for Twist I (Twit II), 

at which there are some extra particles appearing in the massless spectrum. At 

this point, the twisted sector contains two massless scalars in the representation 

(l&16’) E SO(32)/0(16) @ O(16)‘. This suggests that thii point may correspond 

to a compactification [ll] of the SO(32) model, which is tachyonic in ten dimensions 
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]2,4l. 

We proceed now to the evaluation of the one-loop cosmological constant, first 

for Twist I model. In order to make it possible to compare ten-dimensional and 

nine-dimensional theories, we detlne 

Alo E - ’ Ag, 2nr 

where As is the nine-dimensional cosmological constant. We obtain 

Al0 = (2& I F 4~~~~2~PFw - M%4lr 

(111 

where the integration is over the fundamental region of the modular parameter 

r = rr + irz [10,12]. The difference between the fermionic and bosonic partition 

functions is given by 

~F(~,rl - Ma,4 = eye;,” --Y- { [to + t,2][e~e;e~ - e;e;e: - epje;] 

+I& - ~l,2][-~~:(e:~ + e:* + e:e) + e,“(e$e# - e:le,l*)] 

+[Oo - o,12][f8:(e:” + e:e + e:@) - e:(e:le,l* + e:le,18)] 

+I4 + 4/2][-p:(e:~ + e:” + e:e) + e:(e;le,l* - e:le,l*)] ) , (13) 

where the Jacobi theta functions are evaluated at the argument (O]r), and 6; E 

&8s0,. The functions &(a,r) and 0(a,r) are given by the sums (7,101 

5 exp[-2airrnm - rrr(m2a2 + n2/a2)], (14) 
n,m=-02 

where the summation goes over n even (odd) for the functions & (O), and m inte- 

ger (half-integer) for the subscripts 0 (l/2). Modular invariance of the cosmological 
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constant, eqs.(12-14), can be easily proven by using the standard Poisson resumma- 

tion techniques [7,10]. The cosmological constant for the Twiit II model is obtained 

by replacing the argument a of the functions & and 0 by a-‘. 

We numerically evaluated the cosmological constant for Twist I and II thee 

ries. The results are plotted on Fig.1. As expected, the cosmological constant of 

the Twist I model decreases monotonically from the asymptotic O(l6) @ O(l6)’ 

value An, FZ 0.0371(2na’)-s [3] at infinite radius, to the asymptotic zero value at 

radius zero, reflecting supersymmetry restoration discussed before. The asymptotic 

behaviour of this cosmological constant can be evaluated analytically, yielding 

24 <(10,1/2) 1 
Alo “= h - ‘-1 (2r2)6 

0.525 1 
(21Fd)S 2 f ok-“) = (2aa,)s 2s (15) 

where np - nB = 64 is the difference between the number of fermionic and bosonic 

massless degrees of freedom. 

From eq.(15) it follows that, in models with an equal number of exactly mass- 

less fermionic and bosonic degrees of freedom, the one-loop cosmological constant 

is exponentially suppressed at small radii, i.e. large o. A model with such a small 

cosmological constant can be constructed by compactifymg the nine-dimensional 

Twist I model to five dimensions, on four torii with radii ra = re = rr = ra = fi. 

For these special values of the radii, 8 additional S, gauge bosons, corresponding to 

the non-zero roots of [SU(2)14, app eer in the mazsless spectrum. Although the mass 

splitting within the multiplets of broken supersymmetry is of order a-‘, the cosmo 

logical constant behaves lie e-” for large a. The oneJoop cosmological constant 

in four-dimensional analogues of such a model would be of order (2zd)-2e-1/*“‘, 

where MS is the supersymmetry breaking scale. The question whether such a 

huge suppression of the cosmological constant persists to higher string loops is 
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very difficult to answer at the present time. Also, since the two-dimensional sigma 

model on the world-sheet becomes strongly coupled for small values of the radius of 

the compact dimension 1131, some non-perturbative effects may become important. 

Hopefully, these effects would create a potential barrier preventing the compact 

dimension from shrinking to a zero size, without generating a large cosmological 

constant. It is quite surprising, that the supersymmetry breaking scale need not to 

be much lower than the string tension, to insure a practically vanishing one-loop 

cosmological constant. 

We acknowledge useful conversations with W.A. Bardeen, L. Dixon, M. Gleisser, 

M. Mangano and S. Parke. 
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Figure Captions 

Fig. 1: Cosmological constant Alo [in units of C~Ol(27ra’)-~] for Twist I and 

Twiit II models, plotted as a function of the radius r of the compact 

dimension [in units of &j. 


